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Abstract—This work presents a comprehensive development of characteristic lengths for multidimensional,

absorbing, emitting, and scattering media. The length representing emission phenomena is discussed in

detail while the length representing the reflection and transmission contributions is simply derived. The

characteristic lengths are developed from the photon path length approach, yet the lengths are calculable

without knowledge of the photon path length (PPL) distribution functions. Limiting values and the relation

to the mean beam length are presented. Numerical results for planar and cylindrical media for ranges of
optical depth and scattering albedo are presented and discussed.

1. INTRODUCTION

THE CHARACTERISTIC length of a physical system often
gives insight into basic phenomena of the problem.
The concept is used extensively in scaling analyses in
many engineering disciplines. In radiative transfer the
mean beam length and geometric mean beam length
are rigorously defined characteristic lengths which
serve to scale a complex volume to a single line-of-
sight. The mean beam length is defined as the radius
of a gas hemisphere that emits a flux to its base center
point equal to the average flux emitted by the actual
gas volume to the area of concern. The mean beam
length essentially reduces the complete volume inte-
gration to a single line-of-sight calculation and is very
useful in computing the emission of isothermal gas
volumes of many shapes. The geometric mean beam
length generalizes the mean beam length so that radi-
ation exchange between surface pairs of an isothermal
gas volume and real gas behavior are included. In this
case, the shape factor expressions are integrated in the
linear gas absorption regime so that band and growth
models for real gas emission are incorporated. Tabu-
lated values of the length are then required for each
set of surface configurations.

While the above lengths characterize emission from
isothermal gas volumes, neither includes the influence
of scattering in its definition. Scattering redirects the
paths of photon travel and renders useless the area
and volume integrations possible for non-scattering
media. For reflection and transmission problems in
non-emitting media, the mean photon path lengths
have been defined [1-3] to incorporate the effect of
absorption and the redistribution of photon path
lengths that occurs as a result of scattering. The cal-
culation of this characteristic length requires only the
radiative heat flux and the derivative of the heat flux in
the absorbing and scattering (non-emitting) medium

and is therefore quite general. However, the refiec-
tion/transmission mean photon path length does not
characterize medium behavior when volumetric emis-
sion is allowed. One attempt to do so.has been pre-
sented by Cartigny [4] who studied the effect of a
weakly scattering component on the mean beam
length for the case of volume emission by an optically
thin medium.

This work therefore introduces characteristic
lengths that are of interest in multidimensional, ab-
sorbing, scattering, and emitting media. The photon
path length (PPL) method of solving for the energy
transfer is used to develop the lengths. Once devel-
oped, however, the characteristic lengths are calculable
independent of any knowledge of the PPL distribution
functions.

2. PHOTON PATH LENGTH ANALYSIS

The medium of concern in this study is illustrated
in Fig. 1 and consists of an absorbing, scattering, and
emitting medium that is homogeneous and isothermal
with temperature 7. Scattering is assumed to be coher-
ent but may be anisotropic. The volume’s shape is
arbitrary with the proviso that the outer boundary
cannot view itself (i.e. the boundary is convex). The
outer boundary is assumed to be composed of a num-
ber of diffuse differential area elements d4,, each with
its own surface properties (area, temperature or heat
flux, and emissivity). The values of these properties
are functions of the location r,,, of d4, on the bound-
ary. The analysis which follows is done on a spectral
basis, and the absorption and scattering within the
medium are denoted by an absorption coefficient a,
and scattering coefficient o, where v denotes wave
number. The medium phase function is denoted by
P,
Consider a differential area element d4 located at
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a, spectral absorption coefficient [m ']
a, secondary spectral absorption
coefficient [m~*]

A total surface area of the boundary [m?)

dgi, spectral flux at d4 from
redirected/transmitted radiosity of
surface element d4, [W cmm )

d4  differential area element at which the flux
is evaluated fm?]

dd4, differential surface area element [m?]

dV  differential volume element [m?]

D cylinder diameter {m)

iy spectral blackbody intensity
Wemm=?srY

iw  oOutgoing spectral intensity of surface
element d4, [Wemm™2sr7]

! photon path length [m]

{I>% mean length of photon travel for volume
emitted energy arriving at d4 [m]

{I>% mean emission length for volume emitted

energy arriving at d4 [m}

{I>% mean length of photon travel for

redirected/transmitted energy leaving

dA, and arriving at dA [m]

additional mean length for volume

emitted energy arriving at d4 [m]

L total layer depth [m]

O

L., surface area average mean beam length,
4V/[A, [m]

L.y local mean beam length [m]

ny, normal vector to area element d4

P,  spectral phase function

g¥  total flux at d4 from volume emission
Wm7

gf  spectral flux at d4 from volume emission
and redirected/transmitted surface
radiosity [Wemm~7

gt  spectral flux at d4 from volume emission

Wemm™

NOMENCLATURE

r radial coordinate of the cylinder [m]
rq location of area element d4
Yas,  location of surface area element dA,

ray  location of volume element d

T medium temperature {K}

4 total medium volume [m?]

y layer coordinate normal to the

boundaries [m]

z axial coordinate of the cylinder [m].
Greek symbols

B, spectral extinction coefficient, (a,+,)

[m~]
£, directional, spectral emission quantity
v wave number [cm ]
o, spectral scattering coefficient [m™ ']
®(l,ry,) pathlength function for
redirected/transmitted energy [sr m 3]
Y=£(/) path length function for volume emission
fst]

, scattering albedo, o,/(a,+0,).

Superscripts
+ positive direction
- negative direction
’ secondary quantity, directional quantity.

Subscripts
b blackbody
e emission quantity
1 local quantity
mb  mean beam length quantity
o outgoing
rt redirected/transmitted quantity
s surface quantity

wave number dependent quantity.

Yq., internal to the volume ¥V, and let d4 have positive
(+) and negative (—) directions relative to a defined
surface normal ny,. At element d4, the energy flux in
either the (+) or (—) direction, ¢, is composed of
the flux that results from diffuse surface radiosity of
dA, that is redirected and transmitted to d4 in a non-
emitting medium, dg%, and the flux resulting from
volume emitted energy from all volume elements d¥V
which reaches dA4 after absorption and scattering in
the medium with a transparent boundary, g£. Note
that for both ¢ and dg¢g,, the entire medium is con-
sidered since scattering is a volume, rather than line-
of-sight, phenomenon. The radiative energy flux at
dA in either direction (+) from all surface sources
dA, and from all volume sources d¥V'is

g% (surface properties, T, a,, 6., P,, Ta,) =

j dgZ (surface properties, 1y, , 4,, 0, P,, Fy4)
A

+ Qvte (Tv 4,0, va rdA)- (l’)

Explicit functional notation is included in equation
(1) for completeness but will be eliminated in the
remaining equations. The net energy flux at dA4 is then

@ =q7 —q,. @

In developing an expression for dg%,, it is necessary
to define ®*(/, r,, ) d/ as the PPL probability function
for photons with travel lengths between [ and /+d/
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FiG. 1. Multidimensional, isothermal, homogeneous medium
with a convex boundary.

that originate from a source of strength ndA4, (a
diffuse source of unit intensity and area d4,) and reach
dA in either the (+) or (~) direction in a conservative
medium. For the conservatively scattering medium
(a, = 0) and unit intensity source

dgt, = d4, j O (l,ry,) dl. 3
0

®*(l,ry,) dl represents the contribution to the
redirected and transmitted flux at d4 from photons
originating at d4, and having lengths between [ and
I4+dlin a conservative medium. With a surface source
of non-unit outgoing intensity, dg, becomes

dgt, = i, dd4, J O (lr,,) dl @
0

where i,, is the diffuse intensity leaving the surface.
Finally, allowing the absorption coefficient 4, to be
nonzero, dgi, can be written as

dgt, =i, dA,j e~ O (lry,) dl (5
0

Note that the above equations are written in terms
of the radiosity of surface element d 4, since a general
enclosure analysis requires such a form for the surface
exchange. Since the purpose of the current derivation
is the development of characteristic lengths, a com-
plete enclosure solution is not attempted here. Conse-
quently, it is important to note that the lengths that
are eventually developed are not dependent upon the
source strength of dA, and thus are valid for the ex-
change between dA4 and any diffuse area element dA,.

In formulating ¢, a method similar to the above
is used. Let W*(/,ry,) d/ denote the PPL probability
distribution function for photons with travel lengths
between / and /+d/, which have been emitted by a
volumetric source d ¥ located at ry,- and have arrived
at area element d4 in either the (+) or (—) direction
in a conservative medium with a transparent bound-
ary. The PPL function for the entire homogeneous
volume W(f) is obtained by integrating over all
elemental volumes
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Y = J ¥(lry) dV. ()

The internal sources in this case are considered to be
diffuse thermal sources of strength 4z d¥. The flux at
dA4 which results from volume emitted energy that
reaches d4 in a conservative medium with sources of
strength 4ra,i, (T)dV is

qvie = avivbJ. ‘Pi(l) di' (7)
]

Y(]) dl then represents the contribution to the emis-
sion flux at d4 from photons with lengths between /
and /+d!. Introducing absorption, the emitted energy
flux is

g% = a,in(T) J.w e~ W) dl ®)
]

Noting that a directional spectral emission quantity
for path length / can be written

gE)=1-e ®)
and
ey -, "
T (10)
it is possible to rewrite equation (8) as
= iy(T) J %0 gs 4y ar, 1n

Finally, integrating equation (11) by parts to intro-
duce (/) from equation (9) rather than its derivative,

gL reduces to
- lvb(T) J‘

Comparing equations (11) and (12), (/) in equa-
tion (12) describes an integrated or cumulative con-
tribution from an entire PPL. On the other hand,
de,()/él in equation (11) represents a more localized
contribution from an emission source that has been
transmitted by the absorbing constituent. Ultimately,
the development of a characteristic length for emission
will be of concern. Since the concept of emission as an
integrated quantity rather than a local one is needed in
radiative transfer analyses and experiments, the form
of equation (12) is expected to be of more practical
use than equation (11) for the derivation of a charac-
teristic length.

With dg%, and g% defined, the energy flux atd4 is
written using equations (1), (5), (9), and (12)

‘N (’) T2dL (12)

= J imf e= O (I, ry,) dl A4,
Ay (1]

‘l‘ (I)

-lva(T)f (—e"¥)—=dL (13)

Then, using ¥*(o) = 0, equation (13) reduces to
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gt =j o j e @ (l,r,,) dl dA,
A, [

© b 4
risvr 0 +in [ v 00 ag
In equation (14), ¥*(0) = n. To develop this result,
consider a sphere of differential radius d/ about a
differential area element d4. Volumetric emission is
isotropic and the product a,i,,(7T) is given the value of
unity (a.i.(T) = 1) in developing the function ¥*(J).
Therefore, the intensity at dA is diffuse and has the
value i, = d/. Integrating over each hemisphere to
obtain the flux incident at d4

dgi ==ndl (15)

Thus, for the area element d4, the energy incident on
it from volume emission with length 0 to d/ must have
arrived from non-scattered energy emitted within a
distance d/ of the element. (Scattering can be assumed
negligible over a differential length dl) W*(/) in the
region of / = 0 can be defined as the volume emitted
energy flux at d4 in the (+) or (~) direction from
photons with length 0 to d/ divided by the length
interval d/
+

Yia= d:_r =7,
Since dl can be made arbitrarily small (as can d4), it
is valid to state that

(16)

YE(0) = . an
Finally, g* can be written as
qvi = J‘ l‘vsoj’ e—a'lq)t(l,fd,q‘) dIdA,
A, [
owE(l
[mvbmmm f s 24 ’dz] as)

where the emission contribution (the term in brackets
in equation (18)) is also denoted by

x %
qassnf,.,(mi,.,mj 2 0a q9)
0

This is a general expression for the radiative energy
flux at d4. The above analysis can be directly extended
to obtain the radiative intensities at d4.

3. CHARACTERISTIC LENGTHS

The energy flux ¢ involves two integrals over PPL.
The first of these quantifies the amount of energy
leaving d A, that is redirected and transmitted by the
medium to d4. The second integral involves a quan-
tity useful in describing volume emission to d4 by the
medium. The fact that both integrals are over path
length with the integrand composed of a probability
function makes it natural to define characteristic mean
lengths using the first moment of the integrand. Thus,
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a characteristic length for redirected and transmitted
energy {I>, is defined as the following mean:

J‘ le~* ®*(l,ry,) dl
0

D4 =T
[

which describes a mean length of travel for photons
leaving d4, and arriving at d4. Likewise, using the
second integral, an emission length (/) is defined as

« ¥(l)
~al
J; le 5 d/

=
<I>ve Jm *‘la\}’i(l) dl
o B

(20)
~ O (lry,) dI

@b

which describes a characteristic emission length for
the volume radiating to dA. These two lengths are
sufficient to characterize the radiative transfer
phenomena included in g% . However, for the sake of
completeness, several other lengths which present
themselves in the analysis are provided here without
discussion. Returning to equation (8), a length which
describes the mean length of photon travel for pho-
tons emitted volumetrically and arriving at d4 can be
defined as

J le ' w(DH dl
Uy = T
j e pE() dl
0

Equation (12) is used to introduce a second length as
J v

2

le () ——dl

Wk = - 23)
f s a

Another length can be defined by viewing equation
(21) in the limit of vanishing absorption coefficient
{a, - 0). This length is independent of a,.

The two characteristic lengths {/>% and (/)2 that
are defined above are not of direct use in their present
form since they require knowledge of the PPL dis-
tribution functions ®*(/,ry,) and 8¥*(1)/8l. How-
ever, it is possible to circumvent this difficulty. For
{2, consider equation (5)

dgt, = i, dA,J. e ot (lr,,)dl
0

Taking the derivative with respect to a, of this
equation, the following expression is obtained :
d(dg) _
da,

Combining equations (5), (20), and (24), (D% is
expressible as

I 4, j‘ lemv @ (Lrg,)dl. (24
0
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_—loden) _
O3 iE 7a,

_ 9lin (dg3)]
a,

Following the same procedure for {/)%, consider
equation (19)

@25)

» owE(l
g = m;.,m+z;.,mL e Oy

The characteristic length is obtained with

agx . © aw(l
ai =_lvb(T)J; le“'"a—[()dl (26)

to yield

-1 Oqx
lg% —nin(T)] da,
5[111 (’uvb(n Qve)l
- da, @n
As an aside, note that it is possible to define second
and higher-order moments, {(/")>Z, and ("> (n 2= 2),
using the same techniques applied in developing equa-
tions (25) and (27). In this case, higher-order deriva-
tives of dgi, and ¢ are necessary.

The significance of the forms of (/3% and {/DZ in
equations (25) and (27) is that only dgZ, and ¢% and
their derivatives are involved. That is, knowledge
of or calculations involving the PPL analysis are
unnecessary. With the derivatives calculated using a
finite difference approximation, needed values of
dgi, and ¢z may be computed using any method
desired for a particular problem—spherical harmonics,
discrete ordinates, Monte Carlo, etc. Therefore, while
PPL concepts are used to define the mean lengths, the
concepts are unnecessary for the practical com-
putation of {(/>% and (/). In the following sections,
{I>Z will be discussed in greater detail. An extensive
discussion of the value of (/)3 is provided in ref. [1]
for the layer geometry, and additional exposition here
is not warranted.

Di=

4. AN APPLICATION OF ()%

Up to this point, no mention has been made of how
the characteristic length (/)% might be used in a
radiative transfer problem. In order to provide an
example of its application, consider the medium of
Fig. 1 which is assumed to have constant scattering
coefficient 5, and absorption coefficient a,. Now,
introduce a secondary pure absorber into the volume
with absorption coefficient 4,. The volume emitted
energy flux at d4, g&, is then identical to that gzven
in equation (19) with (g, a;) replacing a,

g = ni.b(T)+ivb(T)J; exp (~a)l)

a‘y (1)

xexp (~a,)——dl. (28)
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Replacing exp (—a){) by {1 — (1 —exp (~dl})}, equa-
tion (28) becomes

gt = niv.,(T)+i.b(7)J; exp (—a,l)

Oy j 1—exp (~a)]

*(1)

xexp (—a :) dl (29)

g =qi(al —0)-tvb(7')J [L—exp (~al])]

5‘1’ (1)

xexp (—al)——=dl. (30)

Now, consider the limit of small a4,/ (optically thin
secondary absorber)
Jim [t —exp (~aiD)]

P P 7)o P
—,!m,[av’- 2 tofEa

For small 4}/, it is then possible to substitute equation
(31) into equation (30) to obtain

g = gi(a, = 0)—iw(Na,

X J-m exp (—a,l) 6‘!’ (l) dl
o

(32

Introducing the characteristic emission length {/>%
from equation (21), the energy transfer gt becomes

g = gi(a, = 0)—a{DHilgi(a, = 0)—ni (]
(33)

Thus, ¢gi(a, > 0) can be calculated very easily for
small a,! using only ¢i(a,=0) and {DE. If a
second-order finite difference approximation is used
in calculating the derivative in equation (27), at most
three calculations of g% are necessary to completely
define ¢£(a = 0) and {I>%. Then, for given values
of o, and a,, ¢ (4, > 0) may be computed approxi-
mately for any desired value of the secondary absorp-
tion coefficient 4.

The methodology used in developing equation (33)
is equally valid for the solution of the total energy
transfer g¢ when the secondary absorber is more com-
plex. For example, consider a medium composed of
one constituent with constant absorption and scat-
tering coefficients and a secondary, purely absorbing
constituent with spectrally dependent absorption
coefficient. If this secondary constituent is a real gas
such as CO, or H,0, integration over wave number
introduces the band absorption for each of the gas
bands present. The weak band limit of band absorp-
tion being linearly dependent upon path length / can
be used to introduce {/)Z. This approach is presented
for reflection and transmission problems with scat-
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FiG. 2. Cylinder with aspect ratio D/L = 1/3.

tering media in ref, [1] and for emission problems with
scattering media in ref. [5]. In these references, an
optically thin secondary absorber result is dem-
onstrated to apply to problems with higher optical
depths.

5. LIMITING VALUES AND RESULTS FOR
(UM

At this point, it is interesting to consider the
behavior of {/>% in various limits and for various
geometries. If (/)& is indeed a characteristic emission
length, its expected value for an area element d4 on
the boundary of an optically thin medium (¢, -0,
a,—0) is the local value of the mean beam length.
This trend as well as the general behavior of {I>%
with changing values of the absorption and scattering
coefficients is discussed below.

To check the optically thin limit, first consider the
geometry of a one-dimensional layer with a coor-
dinate y normal to the layer boundaries and total
depth L. In this case, the area element d4 is placed at
the boundary y = L with the surface normal in the
positive y-direction and {/>} at d4 the length of
interest. Then g% at d4 for a layer with o, =0 is

gve = [1-2E;(a,L)]mi,p(T) (34
where E () is the third exponential integral function.
Equation (27) is used to show that {/>;% reduces to

. _ LExa L)
D = @D’

where E,() is the second exponential integral
function. Letting a, — 0 yields

D =2L = Loy, (36)

where L., is the mean beam length for the layer vol-
ume radiating to its boundaries. Thus, the charac-
teristic emission length approaches the mean beam
length in the optically thin limit as expected. Next,
consider a cylinder with an aspect ratio of D/L = 1/3
where D is the diameter and L the height (see Fig. 2).

6, =0 (35)

a,~-+0, a,=0
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0.0 T . r .
0 2 4 6 8 10
oplical depth, BVL
Fi1G. 3. Mean emission length at the surface of the planar
layer.

Area dA4 is located at the center of the upper boundary
with the surface normal in the positive z-direction.
Again, (/> at dA is the desired length. Assuming
¢, = 0 and a, — 0, a numerical evaluation of the PPL
function 6¥*(/)/dl is used in equation (21) to yield
{Ix /L = 0.31 which is equivalent to L,/L for this
geometry. L, is the local value of the mean beam
length as opposed to the surface area average value
which is denoted simply as L.

For more general values of the absorption coef-
ficient a, and scattering coefficient ¢,, a boundary
value of the characteristic emission length (/)% exhi-
bits interesting trends and differs greatly from the
mean beam length. To illustrate this, consider the
identical layer and cylinder geometries used for the
above optically thin results. In both cases, (/)% at
dA, calculable from equation (21) or (27), is desired
for a range of extinction coeflicient, §, = a,+0,, and
scattering albedo, w, = ¢,/(a,+0,). Scattering is
assumed to be isotropic for all results. The results for
the layer are given in Fig. 3 where (/) /L is plotted
vs optical depth, g, L, for several values of albedo. The
cylinder results are provided in Figs. 4-11 where
{OY /Ly is plotted vs extinction coefficient for the
same values of albedo used in Fig. 3 and for various
radial () and axial () positions of the cylinder bound-
ary. The mean beam lengths used for the layer and
cylinder results are the surface area average values,
L, = 4V/A,, where V is the medium volume and A4,

1.2

b 1.0
1.0 0.99
2 0.8
B 095
[ k-4
o 0:6 -
R Ag 0.0 2
v 044 =
1 5 0.75
0.2 4 HD=0.0 05
0.0 ¥ L] x I3
1] 2 4 6 8 10

aptical depth, B\rD

FiG. 4. Mean emission length at the surface of the cylinder
at a radial location of r/D = 0.
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1.0
099

0.95 2
y 0.0
0.75
05

4 6 8
optical depth, B,D
Fi6. 5. Mean emission length at the surface of the cylinder
at a radial location of r/D = 0.25,

10

12
10
 0.99
(-]
0.95
0.75
0.0
D=0.375 05
0‘0 k] T ' T
0 2 8 10

4 6
optical depth, SVD
Fi6. 6. Mean emission length at the surface of the cylinder

at a radial location of r/D = 0.375.

/D=0.499

0 2 4 6
optical depth, ﬂvD
FIG. 7. Mean emission length at the surface of the cylinder
at a radial location of r/D = 0.499,

Seeeo-
sh3ge
albedo

3 10"

OOSOOm
sbzRge
albedo

0 2 4 6 8 10™
optical depth, B,D

FiG. 8. Mean emission length at the surface of the cylinder
at an axial location of z/D = 0.001.

T 3350

the medium surface area. For the layer, the local and
average values are identical.

The numerical results presented are obtained using
a Monte Carlo simulation of the PPL analysis. The
solution involves solving for the emission path length
function —d¥#*(/)/dl in the conservative medium
with a transparent boundary after first noting an
equivalence between this function and the path length
function for diffuse surface incidence at a differential
area element. This equivalence is demonstrated using
conservation of energy arguments for diffuse inci-
dence at a transparent surface element to obtain an
emission path length formulation and then applying
Laplace transform properties. Diffuse incidence at a
boundary element is simulated via a Monte Carlo
technique by following incident energy bundles
through the scattering medium until the bundles reach
the boundary. The total travel lengths are then used
to compose the needed path length function. With the
emission path length function —dW*(/)/él so defined,
the desired mean emission length is obtained by apply-
ing the integral expression of equation (21). To verify
the accuracy of the above procedure, plotted results
for the mean emission length for the layer have been
checked against values derived by applying the ad-
ding-doubling method to compute the volume emitted
flux at the layer boundary. The derivative expression
in equation (27) is then evaluated by finite differences
and used to obtain the mean emission length. The
layer results from this derivative method and those
from the Monte Carlo method agree to within 2%
and typically to within 1%. In addition, the Monte
Carlo procedure used for the plotted values incor-
porates iterative techniques such that an uncertainty
in the results can be specified. The 99% confidence
interval for the plotted values is typically less than
+ 5% of the computed magnitude of the ratio of emis-
sion length to mean beam length. For a few worst case
points, that percentage increases to about +7%.

There are several important trends to note in Figs.
3-11. At the limit of 8, approaching zero, note that
the optically thin results discussed above apply. That
is, the mean emission length (/)% approaches the
local mean beam length. For the cylinder results, how-
ever, the surface area average mean beam length is
used to scale ¢/>;} rather than the local value arrived
at by integration over the volume. Thus, for the cyl-
inder results given, {I>%/L,, does not limit to unity
while {/)}/L.,, does. For example, consider the
r/D = 0 results in Fig. 4 where (/D}/L_, = 1.07 at
B, = 0. Since it can be shown that L, /L, = 1/1.07,
it is clear that (/). approaches the local value of the
mean beam length. For Figs. 5-11, the same type of
behavior is expected at 8, = 0.

In addition, note that for the cylinder, the surface
area average mean beam length L, is the same for all
Figs. 4-11. Therefore, the overall magnitudes of the
lengths for the various positions around the cylinder
boundary can be compared and are generally typified
by the magnitude at B, = 0. Specifically, note that near
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FI1G. 9. Mean emission length at the surface of the cylinder
at an axial location of /D = 0.375.

0.0 -

0 2
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aptical depth, BVD

FiG. 10. Mean emission length at the surface of the cylinder
at an axial location of z/D = 0.75.

0 2 4 6 8 10
optical depth, B"D

FiG. 11. Mean emission length at the surface of the cylinder
at an axial location of z/D = 1L.5.

the corner of the cylinder (r/D=0499 and
z/D = 0.001) the magnitude of {/);; decreases mark-
edly, being much larger near the axial center of the
cylinder (z/D = 1.5) and the base center (r/D = 0).

To interpret the results in these figures, it is helpful
to use equation (33), the important result from Section
4. That is, consider the original medium (a,, o,, P,)
with a very small amount of a secondary gray absorber
(a;) added. The emitted flux g% at a boundary location
is, from equation (33)

9w = gula; = 0)—a{DDilgx(a, = 0)—nin(T)).
(37
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As B, approaches zero and albedo approaches unity
(for arbitrary §,), the emitted flux with no secondary
absorber is zero. Thus

g = nip(Da Dy (38)

which is valid for a, - 0, regardless of the value g,.
The emitted flux is then directly proportional to the
mean emission length. The decrease in {/}} at 8, =0
and §,#0, w, =1 as the corner is approached is
interpreted as a decrease in the local volume emitted
flux. In the case of 8, # 0, w, # 1, the decrease in the
overall magnitude of (/> is interpreted as a decrease
in the local flux that originates as secondary absorber
emission.

The behavior at @, = 1 for the layer and cylinder
can also be explained following the above arguments.
Note that the mean emission length divided by the
mean beam length is equal to a constant for the layer
when albedo is equal to unity. Using the interpretation
discussed above, the optically thin secondary absorber
emits a given amount of energy that is not self-
absorbed. Thus, all of the emitted energy must leave
the medium—half through one boundary and half
through the other, even after scattering has occurred.
The emitted flux ¢,; is then constant, regardless of the
scattering coefficient, and because of equation (38),
the mean emission length is constant.

For the cylinder, however, the argument as to the
distribution of emitted energy at the boundary that is
valid for the layer is inappropriate. That is, scattering
in the cylinder is able to redistribute the energy around
the boundary, increasing ¢ in some locations,
decreasing the flux in others. Because of equation
(38), <I>% behaves correspondingly. Therefore, at the
axial center of the cylinder (Fig. 11), the mean emis-
sion length increases with increasing extinction
coeflicient when @, = 1 while near the corner (Fig. 8)
(>} decreases with increasing §,. This indicates that
increased scattering serves to preferentially scatter the
energy to the center of the cylinder rather than the
corners.

The behavior of the mean emission length for
w,# 1 is a bit more complex. If the extinction
coefficient is fixed and albedo is increased, the emis-
sion length varies nonmonotonically in some cases
(see Figs. 3-6 and 9~11) and rather monotonically in
others (see Figs. 7 and 8). The reason for this behavior
is that by fixing f,, increasing v, = a,/8, = 0,/(a,+0,)
causes o, to increase and @, to correspondingly
decrease. The mean emission length is expected to
increase as g, decreases for fixed o,. For fixed a,,
however, it is difficult to predict the influence of an
increasing scattering coefficient since not only are path
lengths altered, but also energy is redistributed around
the boundary.

6. CONCLUSIONS

A technique for obtaining characteristic length
scales for radiative transfer problems using the PPL
approach is presented. The method is used to develop
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characteristic lengths for an arbitrarily shaped homo-
geneous medium which absorbs, emits, and scatters,
yet the lengths may be computed without knowledge
of the path length distribution f{unctions. A charac-
teristic emission length limits to the mean beam length
for the optically thin media considered. The behavior
of the emission length for media with larger values
of absorption and scattering coefficient is studied.
Finally, an example of how the emission length may
be applied to radiation problems with a secondary
absorber is provided.

Beyond the specific applications discussed above,
the mean lengths have general interest as radiation
length scales. Although length scales are used to a
large extent in other heat transfer disciplines, develop-
ments in radiative transfer analysis are limited. Also of
general interest is the methodology used in develop-
ing the lengths. Radiative intensities and mean lengths
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for intensity are easily obtained using direct exten-
sions of the energy transfer formulas included here.
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SUR LES LONGUEURS CARACTERISTIQUES POUR LES MILIEUX ABSORBANTS,
EMISSIFS ET DIFFUSANTS

Résumé—On présente les longueurs caractéristiques pour des milieux multidimensionnels absorbants, émis-
sifs et diffusants. La longueur représentant les phénoménes d'émission est discutée en détail, alors que la
longueur representant les contributions de la réflexion et la transmission est dérivée simpiement. Les
longueurs caractéristiques sont développées & pamr de Papproche photonique de la longueur de parcours,
mais les longueurs sont calculables sans connaitre les fonctions de distribution des longueurs de parcours
des photons. On présente des valeurs limites et la relation 4 la longueur moyenne du parcours. Des résultats
numériques sont présentés et discutés pour des milieux plans et cylindriques avec diverses épaisseurs
optiques et différents albedos.

UBER DIE CHARAKTERISTISCHE LANGE BE! ABSORBIERENDEN,
EMITTIERENDEN UND STREUENDEN MEDIEN

Zusammenfassung— Die Entwicklung der charakteristischen Lingen in mehrdimensionalen absorbierenden,
emittierenden und streuenden Medien wird vorgestellt. Die charakteristische Liinge fiir die Emission
wird detailliert diskutiert, wiahrend die charakteristischen Langen fiir Reflexion und Transmissionsbeitrige
einfach abgeleitet werden. Ausgangspunkt ist dabei eine Ndherung fiir die Weglinge der Photonen. Die
Lingen kdnnen ohne Kenntnis der Verteilungsfunktion der Weglinge der Photonen (PPL) berechnet
werden. Die Grenzwerte und die Abhingigkeit von der mittleren Weglinge werden dargestellt. Es werden
numerische Ergebnisse fiir ebene und zylindrische Medien bei unterschiedlichen Werten fiir die optische
Dicke und das Streu-Albedo angegeben und diskutiert.

XAPAKTEPHBIE JUTHHBI COBOBOHOI'O NMPOBETA YACTHI VLA INTOTOMAIOMMX,
HITYHAIOMHWX H PACCEHMBAIOIUX CPEL

Amorams—IIpencrasnenn  06o6mieHuRie MeTOnM ONpENC/CHEA XAPAKTEPHWX UIHH CBOGOMHOro
npobera 4acTHU ANS MHOrOMCPHBIX, NOTJIOMAIOCMIEX, NTY4AIOUEX ¥ paccensatoumx cped. [Tono6ro
ofcyxaaeTcs JUTHEA, XapaKTEPRAR JUIN ABJICHEN HTYYCHNA, & JUIRHA, XAPAKTEPHIYIOMAS BXIIAIM OTa-
WCHMA ¥ MPOOYCKAHRS, TONKO ompefensercH. JIIN ONPCACACHES XAPAKTEDHMX AMMH HCHOJM3YeTCH
MOAXOX, ocHoBaHAKM Ha Amane csobosHoro npobera $OTOHA, OAHAXO OHE MOTYT OLITh PRCCYMTRHM H
Ge3 3uanun $ynxumit pacupencnenna gmaEm csoSoaHoro npobera dorona (JCTIP). Hpenc‘ramenn
npenesbEbe 3HAYCHAN B OTHOUICHHE X cpeinell Anmue nyda. Ipusonxres u

PE3YALTATH, NOMYICHHBIC [UIN IUIOCKAX K IHLTHHAPNIECKAX CPCH AN QHANA30HOB ONTHICCKOR mmem

H paccessaioniero anms6eno.



