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Abstract-This work presents a comprehensive development of characteristic lengths for multidimensional, 
absorbing, emitting, and scattering media. The length representing emission phenomena is discussed in 
detail while the length representing the reflection and transmission contributions is simply derived. The 
characteristic lengths are developed from the photon path length approach, yet the lengths are calculable 
without knowledge of the photon path length (PPL) distribution functions. Limiting values and the relation 
to the mean beam length are presented. Numerical results for planar and cylindrical media for ranges of 

optical depth and scattering albedo are presented and discussed. 

1. 1NTRODUCTlON 

THE clwuc~~~lsnc length of a physical system often 
gives insight into basic phenomena of the problem. 
The concept is used extensively in scaling analyses in 
many engineering disciplines. In radiative transfer the 
mean beam length and geometric mean beam length 
are rigorously defined characteristic lengths which 
serve to scale a complex volume to a single line-of- 
sight. The mean beam length is defined as the radius 
of a gas hemisphere that emits a tlux to its base center 
point equal to the average flux emitted by the actual 
gas volume to the area of concern. The mean beam 
length essentially reduces the complete volume inte- 
gration to a single line-of-sight calculation and is very 
useful in computing the emission of isothermal gas 
volumes of many shapes. The geometric mean beam 
length generalizes the mean beam length so that radi- 
ation exchange between surface pairs of an isothermal 
gas volume and real gas behavior are included. In this 
case, the shape factor expressions are integrated in the 
linear gas absorption regime so that band and growth 
models for real gas emission are incorporated. Tabu- 
lated values of the length are then required for each 
set of surface configurations. 

While the above lengths characterize emission from 
isothermal gas volumes, neither includes the influence 
of scattering in its definition. Scattering redirects the 
paths of photon travel and renders useless the area 
and volume integrations possible for non-scattering 
media. For reflection and transmission problems in 
non-emitting media, the mean photon path lengths 
have been defined [l-3] to incorporate the effect of 
absorption and the redistribution of photon path 
lengths that occurs as a result of scattering. The cal- 
culation of this characteristic length requires only the 
radiative heat flux and the derivative of the heat flux in 
the absorbing and scattering (non-emitting) medium 

and is therefore quite general. However, the reflec- 
tion/transmission mean photon path length does not 
characterize medium behavior when volumetric emis- 
sion is allowed. One attempt to do so. has been pm- 
sented by Cartigny [4] who studied the effect of a 
weakly scattering component on the mean beam 
length for the case of volume emission by an optically 
thin medium. 

This work therefore introduces characteristic 
lengths that are of interest in multidimensional, ab- 
sorbing, scattering, and emitting media. The photon 
path length (PPL) method of solving for the energy 
transfer is used to develop the lengths. Once devel- 
oped, however, the characteristic lengths are calculable 
independent of any knowledge of the PPL distribution 
functions. 

2. PHOTON PATH LENGTH ANALYSIS 

The medium of concern in this study is illustrated 
in Fig. 1 and consists of an absorbing, scattering, and 
emitting medium that is homogeneous and isothermal 
with temperature T. Scattering is assumed to be coher- 
ent but may be anisotropic. The volume’s shape is 
arbitrary with the proviso that the outer boundary 
cannot view itself (i.e. the boundary is convex). The 
outer boundary is assumed to be composed of a num- 
ber of diffuse diierential area elements dA,, each with 
its own surface properties (area, temperature or heat 
gux, and emissivity). The values of these properties 
are functions of the location rdA of dA, on the bound- 
ary. The analysis which follows’ is done on a spectral 
basis, and the absorption and scattering within the 
medium are denoted by an absorption coefficient a, 
and scattering coefficient 6. where v denotes wave 
number. The medium phase function is denoted by 

p,. 
Consider a differential area element dA located at 
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a, spectral absorption coefficient [m- ‘] r radial coordinate of the cylinder [m] 
, 

4 secondary spectral absorption rddA location of area element dA 
coeBcient [m-‘1 rd.4, location of surface area element dA, 

A, total surface area of the boundary [m”] rdV location of volume element d Y 

d& spectral flux at dA from T medium temperature [K] 
redirected/transmitted radiosity of V total medium volume [m “1 
surface element dA, fw cm m-*] Y layer coordinate normal to the 

dA diffe~ntial area element at which the flux boundaries [m] 
is evaluated [m7 z axial coordinate of the cylinder [ml. 

dA, differential surface area element [m2) 
dV differential volume element [m”] 

D cylinder diameter [m] Greek symbols 

‘vb spectral blackbody intensity BY spectral extinction coefRcient, (a” + a,) 
pcmm-‘sr-‘] Im- ‘I 

bo outgoing spectral intensity of surface e: directional, spectral emission quantity 
element dA, w cm m-* sr- ‘] V wave number [cm- ‘] 

1 photon path length [m] 8, spectral scattering coefficient [m- ‘] 
(I): mean length of photon travel for volume @*(I, rd.,) path length function for 

emitted energy arriving at dA [m] redirected/transmitted energy [sr m- 3] 

(02 mean emission length for volume emitted Y*(I) path length function for volume emission 

energy arriving at dA [m] brl 
(h$ mean length of photon travel for 0, scattering albedo, aV/(aY+ a”). 

redir~t~~t~ns~tted energy leaving 
dA, and arriving at dA [m] 

Wf additional mean length for volume superscripts 
emitted energy arriving at dA [m] + positive direction 

L total layer depth [m] - negative direction 
L surface area average mean beam length, ’ mb secondary quantity, directional quantity. 

4V/A, [ml 
L &,l local mean beam length [m] 

F; 
normal vector to area element dA Subscripts 
spectral phase function b blackbody 

f 4e total flux at dA from volume emission e emission quantity 

Wm-7 I local quantity 

cr.f spectral flux at dA from volume emission mb mean beam length quantity 
and redirected/transmitted surface 0 outgoing 
radiosity fw cm m- *] rt redirected/transmitted quantity 

f 4ye spectral flux at dA from volume emission S surface quantity 

Iwmm-21 Y wave number dependent quantity. 

Q,,, internal to the volume V, and let dA have positive 
(-t) and negative (-) directions relative to a defined q: (surface properties, T, a,, fr”, P,, r6() = 

surface normal II,,“. At element dA, the energy flux in 
either the (+) or (-) direction, q.f, is composed of 

I 
dq%rface properties, rdA,, II,, u,, P,, rdJ 

the flux that results from diffuse surface radiosity of 4. 

dA, that is redirected and transmitted to dA in a non- + 42 (T, %r b,, p,, rd.& (it 
emitting medium, dqj& and the flux resulting from 
volume emitted energy from all volume elements dV Exphcit functional notation is included in equation 

which reaches dA after absorption and scattering in (1) for completeness but will be eliminated in the 

the medium with a transnarent boundary, US. Note remaining equations. The net energy flux at 64 is then 
_. .._ 

that for both q$ and dqyf, the entire medium is con- 
sidered since scattering is a volume, rather than line- 

4” = 4: -4;. (2) 

of-sight, phenomenon. The radiative energy flux at In developing an expression for dq& it is necessary 
dA in either direction (f) from all surface sources to define cP* (I, r&#) dl as the PPL probability function 
dA, and from all volume sources d V is for photons with travel lengths between I and f+dl 
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FIG. 1. Multidimensional, isothermal, homogeneous medium 
with a convex boundary. 

that originate from a source of strength xdA, (a 
diffuse source of unit intensity and area dA& and reach 
dA in either the (+) or (-) direction in a conservative 
medium. For the conservatively scattering medium 
(a, = 0) and unit intensity source 

co 
d&, = dA, 

I 
W (1, rdA,) dl. (3) 

0 

W(l, rdA,) df represents the cont~bution to the 
redirected and transmitted flux at dA from photons 
originating at dA, and having lengths between 1 and 
I+ dl in a conservative medium. With a surface source 
of non-unit outgoing intensity, dqA becomes 

co 
d&S = i, dA, 

1 
@‘I (1, KU,) dl (4) 

0 

where i, is the diffuse intensity leaving the surface. 
Finally, allowing the absorption coefficient a, to be 
nonzero, dqj$ can be written as 

s 

* 
dq5 = i, dA, e-3 U@ (I, rdA,) dl. (5) 

0 

Note that the above equations are written in terms 
of the radiosity of surface element dA, since a general 
enclosure analysis requires such a form for the surface 
exchange. Since the purpose of the current derivation 
is the development of characteristic lengths, a com- 
plete enclosure solution is not attempted here. Conse- 
quently, it is important to note that the lengths that 
are eventually developed are not dependent upon the 
source strength of dA, and thus are valid for the ex- 
change between dA and any diffuse area element dA,. 

In fo~ulating q& a method similar to the above 
is used. Let Y*(l, rdy) dl denote the PPL probability 
distribution function for photons with travel lengths 
between 1 and l+dl, which have been emitted by a 
volumetric source d V located at rd ,, and have arrived 
at area element dA in either the (+) or (-) direction 
in a conservative medium with a transparent bound- 
ary. The PPL function for the entire homogeneous 
volume ‘Pi(t) is obtained by integrating over all 
elemental vohunes 

Y*(l) = 
I 

Y*(l,r,,) dI? (6) 
Y 

The internal sources in this case are considered to be 
diffuse. thermal sources of strength 4x dV. The flux at 
dA which results from volume emitted energy that 
reaches dA in a conservative medium with sources of 
strength 4nu,i,,( 7’) d Y is 

- 4* * = a,ivb J ‘I’* (1) dl. (7) 
0 

Y*(l) dl then represents the contribution to the emis- 
sion flux at dA from photons with lengths between I 
and I+dl. Introducing absorption, the emitted energy 
flux is 

Noting that a directional spectral emission quantity 
for path length 1 can be written 

e;(l) = 1 -e+ (9) 

and 

as: (1) 
7 = a, e-” 4 

it is possible to rewrite equation (8) as 

4.. * iii &b(T) J o=%$Y”(l)dl. (11) 

Finally, integrating equation (11) by parts to intro- 
duce e:(l) from equation (9) rather than its derivative, 
q; reduces to 

(12) 

Comparing equations (11) and (12), s;(l) in equa- 
tion (12) describes an integrated or cumulative con- 
tribution from an entire PPL. On the other hand, 
&:(l)/tIZ in equation (11) represents a more localized 
cont~bution from an emission source that has been 
transmitted by the absorbing constituent. ~timately, 
the development of a characteristic length for emission 
will be of concern. Since the concept of emission as an 
integrated quantity rather than a local one is needed in 
radiative transfer analyses and experiments, the form 
of equation (12) is expected to be of more practical 
use than equation (11) for the derivation of a charac- 
teristic iength. 

With dq$ and q,$ defkd, the energy flux at dA is 
written using equations (I), (S), (9), and (12) 00 A *= i, J J e-“J@*(l,r,,,JdldA, 

4% 0 

-iVb(n[ (1-e-‘J)Tdl. (13) 

Then, using Y *(co) = 0, equation (13) reduces to 
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J J 9 
q: = i, e-“J @* (1, Q,,,) dl dA, 

A, 0 

-tivt,(T)Y*(0)+ivb(T) 
J 

m e-“JTdl. (14) 
0 

In equation (141, Y*(O) = n. To develop this result, 
consider a sphere of diffe~ntial radius dl about a 
differential area element dA. Volumetric emission is 
isotropic and the product a&,(T) is given the value of 
unity (a&,( 7”) = 1) in developing the function \y* (1). 
Therefore, the intensity at dA is diffuse and has the 
value i, = dl. Integrating over each hemisphere to 
obtain the flux incident at dA 

dq: = 1~ dl. (15) 

Thus, for the area element dA, the energy incident on 
it from volume emission with length 0 to dl must have 
arrived from non-scattered energy emitted within a 
distance dl of the element. (Scattering can be assumed 
negligible over a differential length dl.) Y*(l) in the 
region of I ii: 0 can be defined as the volume emitted 
energy flux at dA in the (+) or (-) direction from 
photons with length 0 to dl divided by the length 
interval dl 

Since dl can be made arbitrarily small (as can dA), it 
is valid to state that 

Y*(o) =x. (17) 

Finally, q$ can be written as 

J J 

cc 
QY *= * ho e-“JcD*(I,r,,) dldA, 

4 0 

J 
03 e_.,ay*(‘) 

0 
lTdl (18) 

1 

where the emission contribution (the term in brackets 
in equation (18)) is also denoted by 

This is a genera1 expression for the radiative energy 
flux at dA. The above analysis can be directly extended 
to obtain the radiative intensities at dA. 

3. CHARACTERISTIC LENOTHS 

The energy flux q: involves two integrals over PPL. 
The first of these quantifies the amount of energy 
leaving dA, that is redirected and transmitted by the 
medium to dA. The second integral involves a quan- 
tity useful in describing volume emission to dA by the 
medium. The fact that both integrals are over path 
length with the integrand composed of a probability 
function makes it natural to define characteristic mean 
iengths using the first moment of the integrand. Thus, 

a characteristic length for redirected and transmitted 
energy (0% is defined as the following mean : 

J mle-aJU@(l,r,Sdl 

<lx-I = Om 

J 

c3-v 
e+cP* (1, rdhA,) dl 

0 

which describes a mean length of travel for photons 
leaving dA, and arriving at dA. Likewise, using the 
second integral, an emission length (1): is defined as 

(21) 

which describes a characteristic emission length for 
the volume radiating to dA. These two lengths are 
sufficient to characterize the radiative transfer 
phenomena included in q,?- . However, for the sake of 
completeness, several other lengths which present 
themselves in the analysis are provided here without 
discussion. Returning to equation (8). a length which 
describes the mean length of photon travel for pho- 
tons emitted volumetrically and arriving at dA can be 
defined as 

03 
1 e-“J Y*(I) dl 

(0: = 
J 

Om 

J 

(22) 
e-G* Y*(1) dl 

0 

Equation (12) is used to introduce a second length as 

J a l&i(l) 
av(i) 

Om 
ardl 

(r): = 

J 

8Y*(Odl 
(23) 

0 
sX0 a* 

Another length can be defined by viewing equation 
(21) in the limit of vanishing absorption coetiicient 
(a,, -c 0). This length is independent of Q,. 

The two characteristic lengths (I)% and <i)z that 
are defined above are not of direct use in their present 
form since they require knowledge of the PPL dis- 
tribution functions @*(I, rdA,) and dY*(l)/dl. How- 
ever, it is possible to circumvent this difficufty. For 
<1>& consider equation (5) 

m 
dq& = i, dA, 

s 
emaJ #* (1, rdA,) dl. 

0 

Taking the derivative with respect to a, of this 
equation, the following expression is obtained : 

Wq&) J 
03 

-= -i,dA, 
aa, 

1 e-+ rD* (1, rd.,,) dl. (24) 
0 

Combining equations (5), (20), and (24). (0% is 
expressible as 
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Following the same procedure for (t)& consider 
equation (19) 

The characteristic length is obtained with 

to yield 

As an aside, note that it is possible to define second 
and higher-order moments, (I”)$, and (ln)f (n Z+ 2), 
using the same techniques applied in developing equa- 
tions (25) and (27). In this case, higher-order deriva- 
tives of dq& and q,$ are necessary. 

The signiticance of the forms of (I>% and <r)$ in 
equations (25) and (27) is that only dq$ and q,$ and 
their derivatives are involved. That is, knowledge 
of or calculations involving the PPL analysis are 
unnecessary. With the derivatives calculated using a 
finite difference approximation, needed values of 
dq& and qj$ may be computed using any method 
desired for a particuiar problem-spherical harmonics, 
discrete ordinates, Monte Carlo, etc. Therefore, while 
PPL concepts are used to define the mean lengths, the 
concepts are unnecessary for the practical com- 
putation of (I>& and (I>$. In the following sections, 
(I); will be discussed in greater detail. An extensive 
discussion of the value of (/)A is provided in ref. [l] 
for the layer geometry, and additional exposition here 
is not warranted. 

4. AN APP~ICA~ON OF (I),$ 

Up to this point, no mention has been made of how 
the characteristic length (Z)g might be used in a 
radiative transfer problem. In order to provide an 
example of its application, consider the medium of 
Fig. 1 which is assumed to have constant scattering 
coefficient 4% and absorption coefficient a,. Now, 
introduce a secondary pure absorber into the volume 
with absorption coefficient a:. The volume emitted 
energy flux at dA, q$, is then identical to that given 
in equation (19) with (aV+a;) replacing a, 

q,? r nivb(T) +kb(T) exp (-ail) 

x =p t-d) 3 dl. (28) al 

Repiacingexp (-all) by[l-(l-exp(-a:Z))],equa- 
tion (28) becomes 

a\y*q) 
x~dl-i,(T) 

I 71 
- exp ( - oil)] 

xex~(-a”~~~d~ 

4; = q,$ (a: = 0) - &b@) 
s 

Yl -exp ( -a:/)] 

xerp(-a.l)Tdl, 

(29) 

(30) 

Now, consider the limit of small a:l (opticafly thin 
secondary absorber) 

jfr~~[l-exp (--a:01 . 

For small ail, it is then possible to substitute equation 
(31) into equation (30) to obtain 

R g 4% = 0)-i+(r)a: 

m 

X I 0 
lexp(-aJ)Tdl. (32) 

Introducing the characteristic emission length (I)$ 
from equation (21), the energy transfer q,$ becomes 

42 g qZ(a: = O)-a:<l)f[qi(al =0)4&(T)]. 

(33) 

Thus, qf (a: > 0) can be calculated very easily for 
small a:1 using only qz(a: = 0) and (I);. If a 
second-order finite difference approximation is used 
in calculating the derivative in equation (27), at most 
three calculations of qz are necessary to completely 
define q,$(4 = 0) and (I);. Then, for given values 
of G, and a, q,$(a: > 0) may be computed approxi- 
mately for any desired value of the secondary absorp- 
tion coefficient a:. 

The methodology used in developing equation (33) 
is equally valid for the solution of the total energy 
transfer q$ when the secondary absorber is more com- 
plex. For example, consider a medium composed of 
one ~nstituent with constant absorption and scat- 
tering coeflicients and a secondary, purely absorbing 
constituent with spectrally dependent absorption 
coefficient. If this secondary constituent is a real gas 
such as CO, or H20, integration over wave number 
introduces the band absorption for each of the gas 
bands present. The weak band limit of band absorp- 
tion being linearly dependent upon path length I can 
be used to introduce {I>f . This approach is presented 
for reflection and transmission problems with scat- 
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Fro. 2. Cylinder with aspect ratio D/L = l/3. 

tering media in ref. [l] and for emission problems with 
scattering media in ref. [S]. In these references, an 
optically thin secondary absorber result is dem- 
onstrated to apply to problems with higher optical 
depths. 

5. LIMfllNG VALUES AND RESULTS FOR 
<o: 

At this point, it is interesting to consider the 
behavior of (I); in various limits and for various 
geometries. If (I); is indeed a characteristic emission 
length, its expected value for an area element dA on 
the boundary of an optically thin medium (a” -, 0, 
a, -+ 0) is the local value of the mean beam Iength. 
This trend as well as the general behavior of (Qf 
with changing values of the absorption and scattering 
coefficients is discussed below. 

To check the optically thin limit, first consider the 
geometry of a one-dimensional layer with a coor- 
dinate y normal to the layer boundaries and total 
depth L. In this case, the area element dA is placed at 
the boundary y = L with the surface normal in the 
positive y-direction and (I): at dA the length of 
interest. Then q: at dA for a layer with tr, = 0 is 

4; = [1-2J%(c,L)l7&(T) (34) 

where E,( ) is the third exponential integral function. 
Equation (27) is used to show that (I): reduces to 

where I&( ) is the second exponential integral 
function. Letting a. + 0 yields 

(0: = 2L = Lb, a,-rO, u, LO (36) 

where L,,,,, is the mean beam length for the layer vol- 
ume radiating to its boundaries. Thus, the charac- 
teristic emission kngth approaches the mean beam 
length in the optically thin limit as expected. Next, 
consider a cylinder with an aspect ratio of D/L = 113 
where D is the diameter and L the height (see Fig. 2). 

1.0 

0.99 

0.0 D 

El a 
0.93 

0.75 
0.3 

0 2 4 6 8 10 

OpsaJ @WI S”L 

FIG. 3. Mean emission length at the surface of the planar 
layer. 

Area dA is located at the center of the upper boundary 
with the surface normal in the positive z-direction. 
Again, (I): at dA is the desired length. Assuming 
u, = 0 and a, -+ 0, a numerical evaluation of the PPL 
function 8P+(f)/~?r is used in equation (21) to yield 
(l);Z/L 2 0.31 which is equivalent to L,,,,,/L for this 
geometry. L,,,,,., is the local value of the mean beam 
length as opposed to the surface area average vafue 
which is denoted simply as Z+,. 

For more genera1 values of the absorption coef- 
ficient a, and scattering coefficient c,, a boundary 
value of the characteristic emission length </)z exhi- 
bits interesting trends and differs greatly from the 
mean beam length. To illustrate this, consider the 
identical layer and cylinder geometries used for the 
above opticatly thin resuits. In both cases, <I); at 
dA, calcuiable from equation (21) or (27), is desired 
for a range of extinction coefficient, fi. = ~,+a,, and 
scattering albedo, 0, = a,/(~~+ a,). Scattering is 
assumed to be isotropic for all results. The results for 
the layer are given in Fig. 3 where (I):/Lmb is plotted 
vs optical depth, j?“L, for several values of albedo. The 
cylinder results are provided in Figs. 4-l 1 where 
(1)$/L,, is plotted vs extinction coefficient for the 
same values of albedo used in Fig. 3 and for various 
radial (r) and axial (z) positions of the cylinder bound- 
ary. The mean beam lengths used for the layer and 
cylinder results are the surface area average values, 
L,,,,, = 4V/,4,, where V is the medium volume and A, 

1.0 
1.0 0.99 

a 
2 

0.8 
0.95 

0.6 
Q 

-u 0.0 
*iI* I T 0.4 a 

0.75 
0.2 0.5 

0 

FIG. 4. Mean emission length at the surface of the cylinder 
at a radial location of r/D = 0. 
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x.0 
1.0 

f 0.8 0.99 

5 0.6 0.95 
+A 
“ii 0.4 0.0 t 

0.2 %r 

0.0 ._I 
0 2 A& 8 10 

S”D 

FIG. 5. Mean emission length at the surface of the cylinder 
at a radial location of r/D = 0.25. 

rJD=o.375 0.3 
0.0, _ , _ , _ * _ . _ 

0 2 
GOOD 

8 IO 

FIG. 6. Mean emission length at the surface of the cylinder 
at a radial location of r/D = 0.375. 
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3 Oe8 4 0.6 
‘k 
t 0.4 

1.0 
0.2 
0.0 t 

0 2 
&hi f&D 
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FIG. 7. Mean emission length at the surface of the cylinder 
at a radial location of r/D = 0.499. 

FK;. 8. Mean emission length at the surface of the cyIinder 
at an axial location of z/B = 0.001. 

the medium surface area. Por the layer, the local and 
average values are identical. 

The numerical results presented are obtained using 
a Monte Carlo simulation of the PPL analysis. The 
solution involves solving for the emission path length 
function -8P*(r)/a\ in the conservative medium 
with a transparent boundary after first noting an 
equivalence between this function and the path length 
function for diffuse surface incidence at a differential 
area element. This equivalence is demo~t~ted using 
conservation of energy arguments for diffuse inci- 
dence at a transparent surface element to obtain an 
emission path length formulation and then applying 
Laplace transform properties. Diffuse incidence at a 
boundary element is simulated via a Monte Carlo 
technique by following incident energy bundles 
through the scattering medium until the bundles reach 
the boundary. The total travel lengths are then used 
to compose the needed path length function. With the 
emission path length function -B‘*(l)/8 so defined, 
the desired mean emission length is obtained by apply- 
ing the integral expression of equation (21). To verify 
the accuracy of the above procedure, plotted results 
for the mean emission length for the layer have been 
checked against values derived by applying the ad- 
ding-doubling method to compute the volume emitted 
ff ux at the layer boundary. The derivative expression 
in equation (27) is then evaluated by finite differences 
and used to obtain the mean emission length. The 
layer results from this derivative method and those 
from the Monte Carlo method agree to within 2% 
and typically to within 1%. In addition, the Monte 
Carlo procedure used for the plotted values incor- 
porates iterative techniques such that an uncertainty 
in the rest&s can be specified. The 99% confidence 
interval for the plotted values is typically less than 
f 5% of the computed magnitude of the ratio of emis- 
sion length to mean beam length. For a few worst case 
points, that percentage increases to about f7%. 

There are several important trends to note in Figs. 
3-11. At the limit of /?,. approaching zero, note that 
the optically thin results discussed above apply. That 
is, the mean emission length (/>z approaches the 
local mean beam length. For the cylinder results, how- 
ever, the surface area average mean beam length is 
used to scale (I): rather than the local value arrived 
at by integration over the volume. Thus, for the cyl- 
inder results given, (1)$/L,,,, does not limit to unity 
while <f),$/L,,,sJ does. For example, consider the 
r/D = 0 results in Fig. 4 where (/)G/&,, 2 1.07 at 
B. = 0. Since it can be shown that &J&,,, z l/1.07, 
it is clear that <I>: approaches the local value of the 
mean beam length. For Figs. 5-l 1, the same type of 
behavior is expected at /IV = 0. 

In addition, note that for the cylinder, the surface 
area average mean beam length Lmb is the same for all 
Figs. 4-11. Therefore, the overall magnitudes of the 
lengths for the various positions around the cylinder 
boundary can be compared and are generally typified 
by the magnitude at /lV = 0. Specifically, note that near 
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0 2 ofikW< lJ,D 
8 10 

FIG. 9. Mean emission length at the surface of the cylinder 
at an axial location of :/D = 0.375. 
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FIG. 10. Mean emission length at the surface of the cylinder 
at an axial location of r/D = 0.75. 
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FIG. 11. Mean emission length at the surface of the cylinder 
atan axial foe&on ofz/D = 1.5. 

the comer of the cylinder (r/D = 0.499 and 
z/D = 0.061) the magnitude of (I): decreases mark- 
edly, being much larger near the axial center of the 
cylinder (z/D = 1.5) and the base center (r/D = 0). 

To interpret the results in these figures, it is helpful 
to use equation (33), the important result from Section 
4. That is, consider the original medium (u,, e,, P,) 
with a very small amount of a secondary gray absorber 
(a:) added. The emitted flux qz at a boundary location 
is, from equation (33) 

As j?” approaches zero and albedo approaches unity 
(for arbitrary /I”), the emitted flux with no secondary 
absorber is zero. Thus 

cr: z xktOM<IX (38) 

which is valid for u, + 0, regardless of the value CT,. 
The emitted flux is then directly proportional to the 
mean emission length. The decrease in (I): at By = 0 
and j?” # 0, W, = 1 as the comer is approached is 
interpreted as a decrease in the local volume emitted 
flux. In the case of fl” # 0, cu, # 1, the decrease in the 
overall magnitude of(/): is interpreted as a decrease 
in the local flux that originates as secondary absorber 
emission. 

The behavior at w, = 1 for the layer and cylinder 
can also be explained following the above arguments. 
Note that the mean emission length divided by the 
mean beam length is equal to a constant for the layer 
when albedo is equal to unity. Using the inte~retation 
discussed above, the optically thin secondary absorber 
emits a given amount of energy that is not self- 
absorbed. Thus, all of the emitted energy must leave 
the medium-half through one boundary and half 
through the other, even after scattering has occurred. 
The emitted flux q$ is then constant, regardless of the 
scattering coefficient, and because of equation (38), 
the mean emission length is constant. 

For the cylinder, however, the argument as to the 
distribution of emitted energy at the boundary that is 
valid for the layer is inappropriate. That is, scattering 
in the cylinder is able to redistribute the energy around 
the boundary, increasing q: in some locations, 
decreasing the flux in others. Because of equation 
(38), <t): behaves correspondingly. Therefore, at the 
axial center of the cylinder (Fig. 11). the mean emis- 
sion length increases with increasing extinction 
coefficient when w, = 1 while near the comer (Fig. 8) 
(I): decreases with increasing 8.. This indicates that 
increased scattering serves to preferentially scatter the 
energy to the center of the cylinder rather than the 
corners. 

The behavior of the mean emission length for 
o, # 1 is a bit more complex. If the extinction 
coefficient is fixed and albedo is increased, the emis- 
sion length varies nonmonotonically in some cases 
(see Figs. 3-6 and 9-11) and rather monotonically in 
others (see Figs. 7 and 8). The reason for this behavior 
is that by fixing fly. increasing w. = a,//$ = a,/@.+ a,) 
causes Q. to increase and a, to correspondingly 
decrease. The mean emission length is expected to 
increase as a, decreases for fixed a,. For fixed a,, 
however, it is dillicult to predict the influence of an 
increasing scattering coefficient since not only are path 
lengths altered, but also energy is redistributed around 
the boundary. 

6. CONCLUSIONS 

A technique for obtaining characteristic length 
scales for radiative transfer problems using the PPL 
approach is presented. The method is used to develop 
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characteristic lengths for an arbitrarily shaped homo- 
geneous medium which absorbs, emits, and scatters, 
yet the lengths may be computed without knowledge 
of the path length distribution functions. A charac- 
teristic emission length limits to the mean beam length 
for the optically thin media considered. The behavior 
of the emission length for media with larger values 
of absorption and scattering coelilcient is studied. 
Finally, an example of how the emission length may 
be applied to radiation problems with a secondary 
absorber is provided. 

Beyond the specific applications discussed above, 
the mean lengths have genera1 interest as radiation 
length scales. Although length scales are used to a 
large extent in other heat transfer disciplines, develop 
merits in radiative transfer analysis are limited. Also of 
general interest is the methodology used in develop- 
ing the lengths. Radiative intensities and mean lengths 

for intensity are easily obtained using direct exten- 
sions of the energy transfer formulas included here. 
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SUR LES LONGUEURS CARACTERISTIQUES POUR LES MILIEUX ABSORBANTS, 
EMISSIFS ET DIFFUSANTS 

R&nut&-On pr&sente les longueurs caract&istiques pour des milieux multidimensionnels absorbants, emis- 
sifs et diffusants. La longueur representant les phenomenes d&mission at d&u& en d&tail, alors que la 
longueur representant les contributions de la r&Iexion et la transmission est d&i&e simplement. Les 
lon~eu~ caractkistiques sont developpees d partir de I’approche photonique de Ia Iongueur de par&n, 
mais les longueurs sont calculables sans connaitre les fonctions de distribution des longueurs de parcours 
des photons. On pn%ente des vateurs limites et la relation P la iongueur moyenne du parcours. Des resultats 
numtriques sont p&sent&s et disc&s pour des milieux plans et cylindriques avec diverses Cpaisseurs 

optiques et differents albedos. 

I)BER DIE CHARAKTERISTISCHE LANGE BEI AESORBIERENDEN, 
EMI~IEREND~N UND STREUENDEN MEDIEN 

Zusamnettfmung-Die Entwicklung der charakteristischen Liingen in ~h~i~sionalen absorbierenden, 
emittierenden und streuenden Medien wird vorgestellt. Die charakteristische tinge fib die Emission 
wird detailliert diskutiert, wghrend die charakteristischen Liingen fur Reilexion und Transmissionsbeitriige 
einfach abgeleitet werden. Ausgangspunkt ist dabei eine N;iherung fir die Wegkinge der Photonen. Die 
L&tgen kbnnen ohne Kenntnis der Verteilungsfunktion der Weglringe der Photonen (PPL) berechnet 
werden. Die Grenzwerte und die Abhiingigkeit von der mittleren Wegliinge we&n dargestellt. Es werden 
numerische Ergebnisse Rir ebene und zylindtische Medien bei unterschiedlichen Werten fib die opt&he 

Dicke und das Streu-Albedo angegeben und diskutiert. 


